The Future of Jet Fuel and Sustainable Aviation Fuel

Post-COVID recovery, long-term outlook to 2050, decarbonization impacts, sustainable aviation fuels, and new technology and players

Multi-Client Study Prospectus

440 COBIA DR • STE 1704
HOUSTON • TEXAS 77494
+1 (281) 506-8234
INFO@ADI-ANALYTICS.COM
WWW.ADI-ANALYTICS.COM

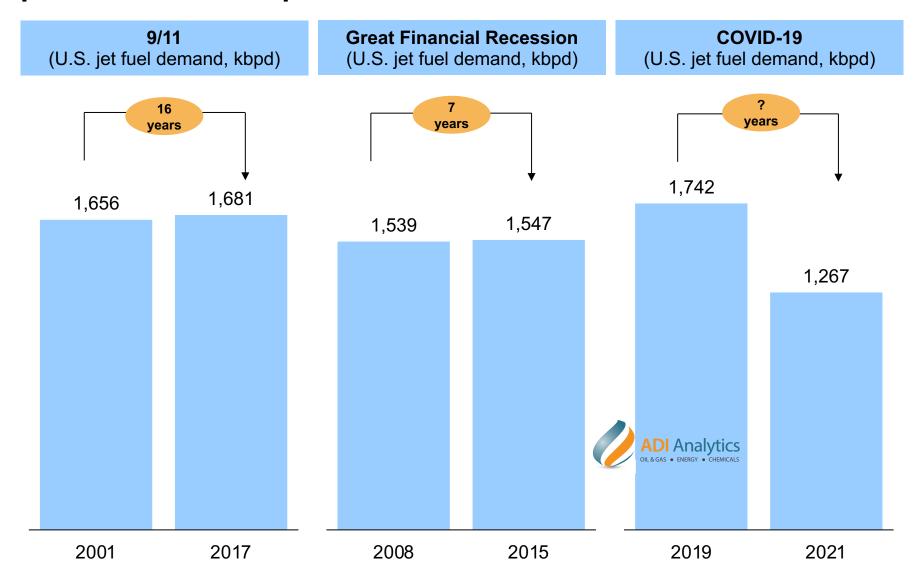
DISCLAIMER

ADI ANALYTICS LLC HAS EXERCISED ITS BEST EFFORTS IN PREPARING THIS REPORT BUT DOES NOT REPRESENT OR WARRANT THAT IT WILL BE FREE FROM ERRORS OR OMISSIONS.

THIS DOCUMENT IS PROVIDED "AS IS". NEITHER ADI ANALYTICS LLC, THE AUTHORS, NOR THEIR AFFILIATES AND REPRESENTATIVES MAKE ANY WARRANTY, EXPRESSED OR IMPLIED, OR ASSUME ANY LEGAL LIABILITY OR RESPONSIBITLY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY CONTENT OF THIS DOCUMENT.

ADI ANALYTICS LLC AND ITS AFFILIATES AND REPRESENTATIVES ARE NOT RESPONSIBLE FOR ANY DAMAGE. WHETHER PHYSICAL. ELECTRONIC. FINANCIAL. OR OTHERWISE THAT MAY RESULT FROM RELIANCE ON OR THE USE OF THIS DOCUMENT AND ITS CONTENTS.

BY CHOOSING TO USE THE CONTENTS OF THIS DOCUMENT, YOU DO SO AT YOUR OWN RISK. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE DOES NOT CONSTITUTE OR IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY ADI ANALYTICS LLC, THE AUTHORS, OR THEIR AFFILIATES AND REPRESENTATIVES.


THIS DOCUMENT AND ITS CONTENTS SHOULD NOT BE REPRODUCED, DISCLOSED, OR DISTRIBUTED - IN PART OR ITS ENTIRETY - WITHOUT THE EXPRESS PRIOR WRITTEN CONSENT OF ADI ANALYTICS LLC.

Outline

Study Prospectus

- Sample pages
- ▶ About ADI

Jet fuel markets have taken a very long time to recover from past demand disruptions

Jet fuel markets face a very slow recovery post-COVID in the short term and critical disruptive challenges in the long term

Background and strategic questions

- Jet fuel markets are in a deep slump today due to COVID-19 and expectations for a quick recovery from pent-up economic and consumer demand have been stunted by new infection waves
- Historical analysis shows that prior demand disruptions, e.g., following 9/11 and the Great Financial Recession, took much longer to recover from
- Simultaneously, Energy Transition and decarbonization momentum is gaining pace very quickly posing a number of long-term challenges to the outlook for jet and aviation fuel markets

Demand / supply

- What will post-COVID jet fuel demand look like? Will it recover to 2019 levels?
- What do post-COVID demand drivers for jet fuel looks by region and why?
- What is jet fuel supply outlook including sustainability aviation fuels?

В

Regulations and innovation

- How are policies and regulations shaping aviation and jet fuel markets? Why?
- What innovation and technologies will allow decarbonization in aviation fuels?
- Which technologies are likely to achieve commercial status and scale?

Value chain participants and strategic implications

- How are jet fuel customers and suppliers adjusting strategies? Why?
- Who is likely and succeed and where? Implications for supply and demand?
- What should jet fuel value chain participants do and prepare for the future?

A handful of countries in Europe along with the U.S. are driving SAF adoption policies

These factors will be addressed by ADI's multi-client study as reflected by its comprehensive table of contents

1	Executive Summary Key conclusions, findings, and strategic implications with a review workshop and data spreadsheet	7	Low-Carbon / Sustainability Aviation and Jet Fuels Inventory and profiles of sustainable aviation and jet fuel supply processes, pathways, and technologies
2	Jet Fuel Demand Outlook to 2050 Forecasts for jet fuel demand by type through 2050 with key drivers and corresponding scenarios by region	8	Sustainable Aviation Fuel Market Drivers Population / economic growth, business / consumer travel, infrastructure investments, regulations / policies
3	Jet Fuel Demand Recovery Post-COVID Analysis of jet fuel demand recovery pathways and drivers including historical recovery analyses	9	Cost and Economic Analysis Regional and technology analyses around costs and economics of various jet fuel supply options
4	Jet Fuel Supply Outlook to 2050 Jet fuel supply outlook by region through 2050 in key scenarios including new, sustainable supply options	10	Corporate Landscape Analysis Lists of key jet fuel users and their initiatives around long-term decarbonization and sustainability improvements
5	Aviation and Jet Fuel Regulatory and Policy Review Review of policies and regulations on decarbonization and sustainability of aviation and jet fuels	11	Suppliers' Competitive Analysis Lists of key jet fuel suppliers including new technology and process developers and competitive landscaping
6	Decarbonization Challenges in Jet Fuel Value Chain Aviation and jet fuel value chain's carbon footprint and challenges with decarbonization	12	Strategic Implications and Opportunity Analysis Findings and conclusions, strategic implications, risks and mitigation strategies, and opportunity analyses for jet fuel suppliers

Key deliverables of ADI's "Future of Jet Fuel and Sustainable **Aviation Fuel" study**

Outcomes

- In-depth coverage of jet fuel markets globally and across key regions
- Jet fuel supply-demand through 2050 and near-term demand recovery analysis
- Decarbonization and sustainability in jet and aviation fuel markets globally
- Economics and competitive landscape of jet and aviation fuels
- Global feedstock supply availability and analysis

Deliverables			
~100-page report			
~20-page executive summary deck			
Spreadsheet data package			
Review workshop and analyst access			

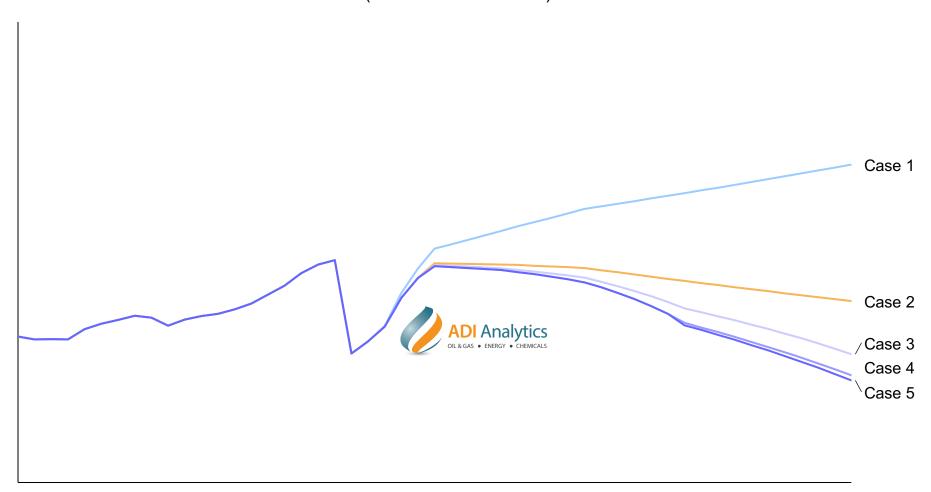
Quarterly subscription option to stay updated

Contact Uday Turaga, +1.281.506.8234 or info@adi-analytics.com to purchase this study.

Outline

- Study Prospectus
- Sample pages
- ▶ About ADI

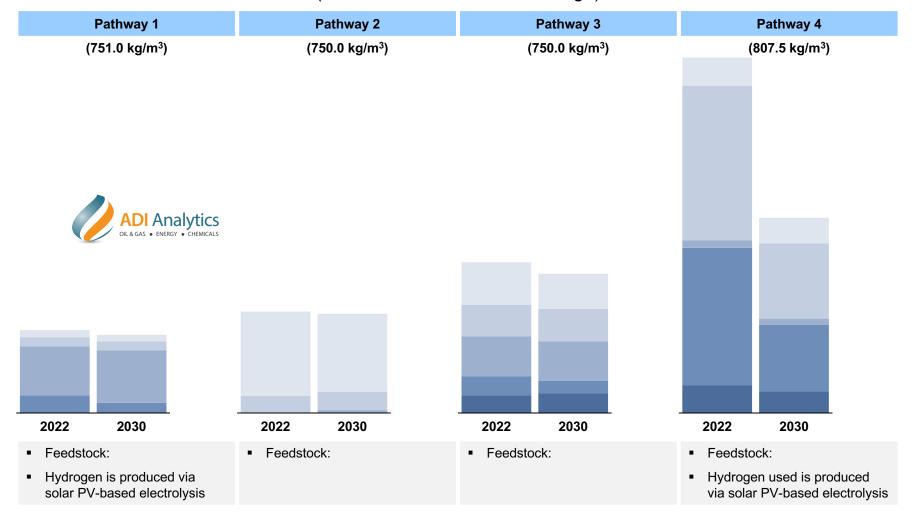
Various technologies based on type of aircraft will have to be adopted to improve fuel efficiency in aviation


Roadmap to Decarbonization in Aviation

Aircraft Options to type decarbonize	Long-haul	Medium-haul (250 seats)	Short-haul (160-170 seats) ~1,200 miles	Regional (80 seats)	Commuter (<19 seats)
SAF					
Retire old aircraft					
Carbon offset schemes					
Better navigation path					
Improved wing aerodynamics					
More electric systems					
Optimized flight path					
New wing technology					
H ₂ fuel					
Hybrid-electric					
Fuel cell applications					
Full electric					
Full hydrogen					

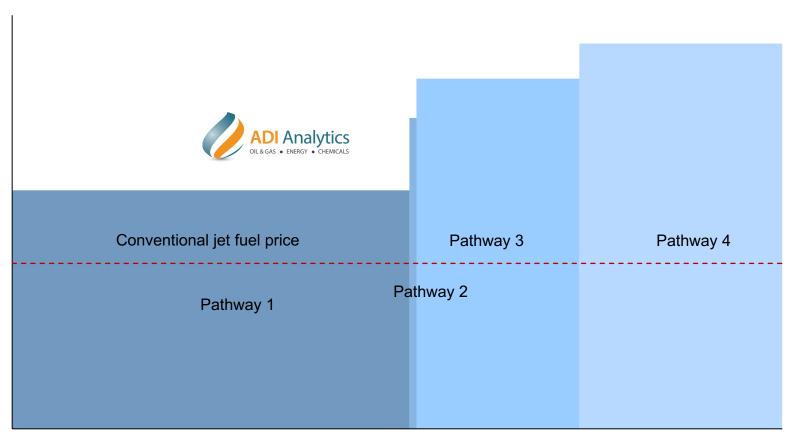
- June 2020: first full electric 2-seater is certified by EASA
- Sep 2020: first flight hydrogen-electric 6-seater is tested, fuel cell, 500nm range, EIS 2023
 - Around 2025: Airbus new mid-sized aircraft program is expected to launch
 - 2026: Do228, fuel cells powered 19-seater are expected to launch

ADI estimated CO₂ emissions and SAF demand over several cases of adoption of SAF and other disruptive technologies


Lifecycle Jet Fuel CO₂ Emissions Outlook (Billion Tons Per Year)

ATJ and gasification/FT SAF costs are driven by high capex costs

Global SAF Production Costs by Production Pathway


(U.S. Dollars Per Gallon, Average)

ADI assessed production cost and capacity outlook of key SAF production pathways

Global SAF Production Cost Curve By Pathway in 2026

Production capacity, million gallons per year

ADI understands that SAF feedstocks must be sustainable and not threaten food security or increase indirect land usage

Feedstock Sustainability Criteria

Feedstock type	Feedstock category	Feedstock	GHG saving potential	Sustainability concerns
	Edible oil crops	Palm		
		Soybean		
1st gan / aran basad		Others (sunflower, canola)		
1 st gen / crop-based	Edible sugars	Sugarcane		
		Maize		
		Other		
	Waste and residue lipids	Used cooking oil		
		Animal tallow		
		Other (fish oil, POME)		
	Oil trees on degraded land	Jatropha, pongamia		
	Oil cover crops	Camelina, pennycress		
Advanced and waste	Cellulosic cover crops	Miscanthus, switchgrass		
Advanced and Wacto	Agricultural residue	Rice straw		
		Sugarcane bagasse		
		Other (cereal residue)		
	Forestry residue			
	Wood-processing waste			
	Municipal solid waste			
Dogwolad carbon	Reusable plastic waste			
Recycled carbon	Industrial waste gas			
Non-biomass based	CO ₂ from direct air capture			
No	Fully sustainal	Partially sustain		

ADI actively tracks airlines that have committed towards SAF production and commercialization in addition to off-take deals

Airline	Producer	ADI Analytics OR BURS • OFFICE • OFFICE S	Discussion
UNITED	Alder Fuels	Made a multi-million-dollar investment along with Honeywe for commercial production of SAF	
DELTA	NESTE BEVO	Committed to replace 10% of current jet fuel use with SAF with 2030	
American Airlines	PROMETHEUS	Plans to procure 10 million gallons SAF by 2025	
Alaska Airlines	SkyNRG NESTE	Has SAF offtake agreements with	
Southwest Partnering to develop a		nd commercialize SAF	
Prime Air	world energy	Has purchased 6 million	n gallons of SAF
EXPRESS	NESTE	. •	% SAF by 2030 and is planning a ject in northern Kentucky
jetBlue	SG Preston	Has partnered to boost	SAF use to 8% by 2023
BRITISH AIRWAYS	PHILLIPS 66	Aims to achieve net-zer source SAF from Philips	ro carbon emissions by 2050 and will s66
Lufthansa	NESTE	Aims to halve net CO ₂ and achieve a net-zero	emissions by 2030 compared to 2019 CO ₂ balance by 2050
QANTAS	air bp	•	liters of SAF in 2022 with an option to illion liters in 2023 and 2024

Outline

- Study Prospectus
- Sample pages
- **▶** About ADI

ADI is a consulting firm serving oil & gas, energy, chemicals, and industrial clients with expertise, rigor, and passion

Over 300 clients – Fortune 500 brands, mid-sized firms, startups, and investors – engage ADI to shape decisions

Clients accelerate priorities with ADI's consulting services, subscription research, data analytics, and conferences

Stay ahead of the curve with market intelligence, forecasts, and analysis from ADI's subscription research services

ADI subscription research >>

SAF tracker

Downstream market advisorv

The future of direct air capture

ADI multi-client reports >>

Natural climate solutions

Sustainable aviation fuel (SAF)

Global CapEx / OpEx outlook

Energy transition advisory

Alternative marine fuels market study

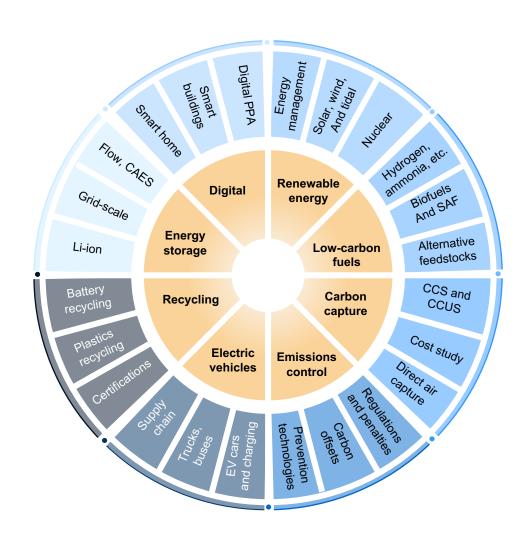
Global / NA small-scale LNG

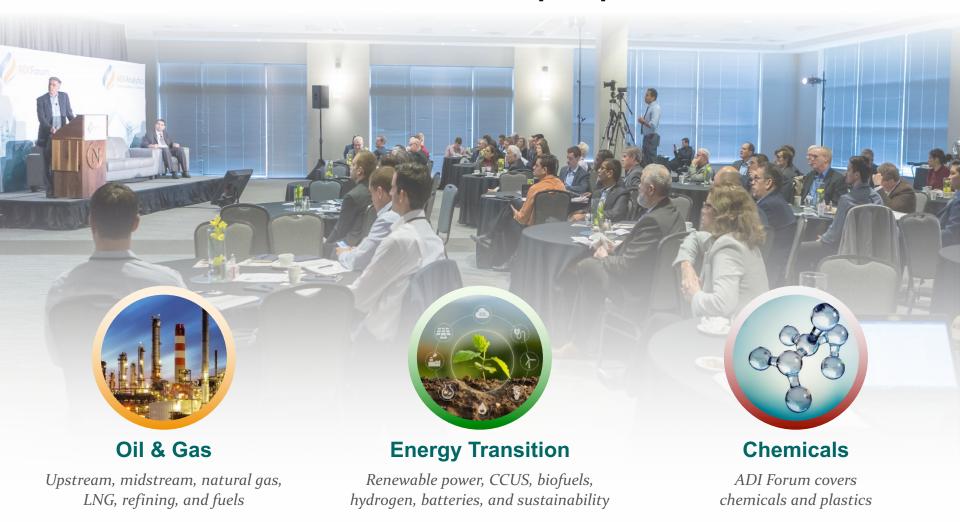
U.S. gasoline and octane outlook

Refueling North America with LNG


Latin America refined product exports

Assessing opportunities in bio-based chemicals


Benchmarking shale gas monetization options


Critical minerals and energy transition

Access research and reports >>

ADI is increasingly helping clients with their energy transition needs across the board driving sustainability in oil & gas

Build a strategic view of O&G, energy transition and chemical industries informed with executive perspectives at ADI Forum

February 11-13, 2025 • Houston, TX • www.adi-forum.com

440 COBIA DR • STE 1704 • HOUSTON • TEXAS 77494 +1 (281) 506-8234 • INFO@ADI-ANALYTICS.COM WWW.ADI-ANALYTICS.COM

in

CREATING VALUE SINCE 2009

300+ CLIENTS

700+
PROJECTS

15+ SERVICES

90+ ATABASES 3-day CONFERENCE