The Future of Direct Air Capture

Research, intelligence, and insights on DAC technology, costs, applications, and implementation

Multi-Client Study Prospectus

440 COBIA DR • STE 1704 HOUSTON • TEXAS 77494 +1 (281) 506-8234 INFO@ADI-ANALYTICS.COM WWW.ADI-ANALYTICS.COM

CONFIDENTIAL

Outline

Study Prospectus

About ADI

ADI's new study will analyze the current state of Direct Air Capture (DAC) and its future projections

Multi-client study drivers

- The latest IPCC estimates that that we must remove up to 660 billion tonnes of CO₂ to limit global warming.
- Direct air capture (DAC) will be an important component of achieving carbon targets as other solutions alone will not be enough.
- The recently-passed Inflation Reduction Act (IRA) provides new incentives through enhanced 45Q tax credits to promote advancements in DAC.
- Numerous companies are entering the space and advancing technologies to reduce the costs and energy needs currently associated with DAC.

Strategic questions for the ADI study

- What is the state of the DAC industry?
- What advances are being made in technology, and how are these advanced improving costs?
- What longer term challenges remain?
- Who is playing in this space, both developing technology and implementing projects?
- What DAC projects are being developed, and what challenges are they facing?
- What environmental and regulatory challenges are affecting the industry?
- Where is DAC headed over the next decade, and what share of CO₂ can it get?
- What are the strategic implications and associated risks and uncertainties for current and new participants?

DAC today is very expensive and has the highest CO₂ capture costs of all carbon capture technologies

Discussion	Carbon (\$ p	to capture costs per ton CO_2)	
 DAC costs between \$100 and \$1,000 per tonne of CO₂ compared to costs well below \$50 per tonne for industrial process and highemitting sources 			
Globally there is limited DAC capacity today, with 27 facilities worldwide removing around 10,000 kilotonnes of CO ₂ annually			\$1,000
 Globally, numerous DAC projects are underway, some having 1+ MtCO₂ capacity 		\$290	
 Numerous companies and startups are developing innovative DAC technology to increase efficiency and reduce costs 	<mark>\$0</mark> \$35 Industrial Hig process w/po	\$40 gh-emitting int sources	\$100 Direct air capture
Carbon management and DAC have incredible federal and growing private support right now promoting rapid innovation	CO2 separation	High Low	
		CONFIDENTIAL	ADI Analytics

Numerous federal incentives are promoting the advancement and implementation of DAC technology

DAC Incentives in Inflation Reduction Act

	Pre IRA 45Q credits (\$ / tCO ₂)	IRA 45Q credits (\$ / tCO ₂)	Increase
Industrial carbon – non-EOR	\$50	\$85	70%
Industrial carbon – EOR/utilized	\$35	\$60	71%
DAC carbon – non-EOR	\$50	\$180	260%
DAC carbon – EOR/utilized	\$35	\$130	271%

- Requirement for qualified DAC facilities reduces from 100,000 to 1,000 tCO₂ annually
- Direct pay provision for 45Q credits makes them easier to monetize
- Construction deadline extend from 2026 to 2033

Discussion

- The 2022 Inflation Reduction Act (IRA) provided numerous benefits to promote carbon management
- Prior to the IRA, DAC CO₂ and industrial CO₂ were valued the same, providing little incentive to target expensive DAC technology
- The IRA increased 45Q credits for DAC at least 260%; making DAC credits worth more than twice that of industrial captured CO₂
- IRA made it easier for DAC facilities to qualify for 45Q
- The Infrastructure Investment and Jobs Act of 2022 (IIJA) also provided significant funding for DAC
 - \$3.5 billion for regional DAC hubs
 - \$3.5 billion for carbon capture demonstration and pilot programs
 - \$115 million for DAC prizes

International governments are funding and promoting DAC advancement as well

Publicly funded programs and strategies outside the U.S.

	Canada	European Union		United Kingdom		Japan
•	Greenhouse Gas Offset Credit System Climate Action and Awareness Fund Net Zero Accelerator Clean Fuel Standard 2022 Canadian Federal Budget	 Horizon Europe Innovation Fund Communication on Sustainable Carbon Cycles 		Spring Budget 2023 DAC and GHG removal competition Net Zero Strategy	•	Moonshot Research and Development Program: Goal 4
		Countries with DAC pr	oje	ects in development		
	Australia Car	nada Chile		Norway U	J.S.	U.K.

The private sector is also providing unprecedented funding to fight climate change through DAC and carbon capture

- \$925 million advanced market commitment (AMC), known as Frontier, for carbon removal
- Additional companies anticipated to join over time
- 60% of first accepted proposal were for DAC

Growing customer support

- Amazon, TD Bank Group, Houston Astros, ANA, and Airbus have invested millions of dollars in CDR credits from 1PointFive
- Record fund raise for carbon capture in 2022, with venture capital up to \$13.8 billion
 - Largest investment was \$650 million for Climeworks series F fundraising
 - Climeworks is the largest DAC company in the world
- Breakthrough Energy Ventures led by Bill Gates – working to advance carbon capture
- Chan Zuckerburg Initiative led by Priscilla Chan and Mark Zuckerburg – donated \$21 million for carbon removal technologies
- The Musk Foundation and X-Prize partnered for a \$100 million carbon removal challenge

Currently there are limited types of DAC technologies, but emerging technologies look to improve efficiency

Current Technology				
	S-DAC	L-DAC		
CO ₂ separation	Solid sorbent	Liquid solvent		
Energy consumption (kWh / tCO ₂)	Up to 2,783	Up to 1,825		
Temperature	50-120°C	900°C		
Water requirements (tH ₂ O / tCO ₂)	-2 to 2	0 to 50		
Land requirement (km ² / MtCO ₂)	1.2 – 1.7	0.4		
Levelized cost of capture (USD / tCO ₂)	Up to 1000	Up to 340		

Emerging Technologies

- Electro-swing adsorption (ESA)
 - Based on electrochemical cell
 - Absorbs CO₂ when negatively charged and releases when positive charged
 - Tested with efficiency ~90%
- Membrane-based DAC (m-DAC)
 - Technology in infancy
 - Requires expensive compression of large amounts of ambient air
- Artificial leaf utilizing capturing CO₂ across electrically charged membrane
 - Lab tested concept
 - Flux rate 100x better than other systems
 - Cost estimated at 145 per tCO₂

The ADI study will be an in-depth review of DAC policies, technologies, costs, incentives, innovation, projects, and players

ADI's proposed study contents is detailed and comprehensive but can be shaped and refined further by subscribers

1	Executive summary Key conclusions, findings, and strategic implications with a review workshop and data spreadsheet	7	Challenges for DAC Analysis of challenges in DAC including in technical advances and implementation
2	Introduction to DAC Background and introductory information on existing DAC technology and projects	8	DAC projects in progress Details on DAC projects in planning or development and review of companies operating in this space
3	DAC market and forecasts <i>Review of DAC projects, investors, and forecasts and</i> <i>drivers for DAC growth</i>	9	DAC costs and economics Breakdown of costs and economics for DAC technology and facilities
4	U.S. policies and incentives Review of local and federal policies and regulations promoting and financing DAC	10	Risks and mitigants Review of risks for DAC implementation and mitigants available
5	Global policies and incentives Review of international policies and regulations promoting and financing DAC	11	Market and strategic implications Analysis of implications for various technical, structural, and regulatory changes for DAC
6	Innovations in DAC Analysis of emerging technologies, innovations and players in this space	12	Conclusions and recommendations Key findings and major conclusions

ADI's "The Future of Direct Air Capture" study offers subscribers a number of benefits

Outcomes	Deliverables		
In-depth coverage of DAC space	~100-page report		
Extensive review of existing and emerging global policy and initiatives	~20-page executive summary deck		
Review of DAC projects, technology, players, and stakeholders	Spreadsheet data package		
DAC costs and breakdown by technology type and cost improvement opportunities	Review workshop and analyst access		
Key commercial insights and strategic implications	Quarterly subscription option to stay updated		

info@adi-analytics.com to purchase this study.

Outline

- Study Prospectus
- About ADI

ADI is a consulting firm serving oil & gas, energy, chemicals, and industrial clients with expertise, rigor, and passion

CONFIDENTIAL

Over 300 clients - Fortune 500 brands, mid-sized firms, startups, and investors have engaged ADI to shape decisions

Our value proposition – expertise, experience, analytics, and thought leadership – is designed to help clients succeed

Deep, frontline industry expertise

Differentiated thought leadership

Clients accelerate priorities with ADI's consulting services, subscription research, data analytics, and conferences

Consulting

Discover and capture opportunities, solve problems, and help businesses thrive amid uncertainty with ADI's market research and management consulting services

Research

Track markets with ADI's subscription research

Analytics

Inform workflows with ADI data, models, and analytics

Forum

ADI Analytics

Build a strategic view and network at our conference

Clients shape strategy, grow sales, refine costs, drive deals, and build competencies with ADI's consulting services

After acquiring Chemical Market Resources, ADI's expertise has grown and now spans the entire hydrocarbon value chain

CONFIDENTIAL

Stay ahead of the curve with market intelligence, forecasts, and analysis from ADI's subscription research services

ADI subscription research >>

SAF tracker

Downstream market advisory

The future of direct air capture

ADI multi-client reports >>

Natural climate solutions

Sustainable aviation fuel (SAF)

Global CapEx / OpEx outlook

Refueling North America with LNG

Energy transition advisory

Latin America refined product exports

Alternative marine fuels market study

Assessing opportunities in bio-based chemicals

Access research and reports >>

Global / NA small-scale LNG

Benchmarking shale gas monetization options

U.S. gasoline and octane outlook

Critical minerals and energy transition

ADI enjoys a stellar reputation for exceptional project delivery and client service and satisfaction

- "Work directly with firm partners ... high-quality work products."
- Alex Rozenfeld, VP, Ventures, Shell

- "Lots of oil & gas expertise. Very analytically driven. Better customer service."
- Vikki Dunn, CMO, GE Oil & Gas

- "The best about ADI is their ability to drill into a specialized area."
- Johanna Schmidtke, Director, Saudi Aramco

- "Very diligent, very detailed ... went the extra mile."
- Elliott Smith, VP, Strategy, Voith

- "They've been outstanding. ADI is very thorough, very professional. They deliver a lot of good insights right out of the gate."
- Randy Benson, VP, Sales, Harsco

- "ADI did a great job to help us think and advance in making our investments."
- Meghan Leggett, Principal, White Deer

- "The thoroughness of ADI's research is phenomenal."
- Steve Woodward, SVP, Antero Resources

"ADI has very deep market knowledge and access to the right experts and delivered very successful projects."

- Brian Orkin, Partner, Arsenal Capital Partners

Build a strategic view of O&G, energy transition and chemical industries informed with executive perspectives at ADI Forum

Oil & Gas

Upstream, midstream, natural gas, LNG, refining, and fuels

Energy Transition

Renewable power, CCUS, biofuels, hydrogen, batteries, and sustainability

Chemicals

Fley

ADI Forum now covers chemicals and plastics replacing our FlexPO+ event

February 20-22, 2024 • Houston, TX • www.adi-forum.com

440 COBIA DR • STE 1704 • HOUSTON • TEXAS 77494 +1 (281) 506-8234 • INFO@ADI-ANALYTICS.COM WWW.ADI-ANALYTICS.COM

15+ services

600+

90+ databases

3-day

2009

300+

COPYRIGHT © 2009-2023 ADI ANALYTICS LLC.